The Computational Complexity of Duality

نویسندگان

  • Shmuel Friedland
  • Lek-Heng Lim
چکیده

We show that for any given norm ball or proper cone, weak membership in its dual ball or dual cone is polynomial-time reducible to weak membership in the given ball or cone. A consequence is that the weak membership or membership problem for a ball or cone is NP-hard if and only if the corresponding problem for the dual ball or cone is NP-hard. In a similar vein, we show that computation of the dual norm of a given norm is polynomial-time reducible to computation of the given norm. This extends to convex functions satisfying a polynomial growth condition: for such a given function, computation of its Fenchel dual/conjugate is polynomial-time reducible to computation of the given function. Hence the computation of a norm or a convex function of polynomial-growth is NP-hard if and only if the computation of its dual norm or Fenchel dual is NP-hard. We discuss implications of these results on the weak membership problem for a symmetric convex body and its polar dual, the polynomial approximability of Mahler volume, and the weak membership problem for the epigraph of a convex function with polynomial growth and that of its Fenchel dual.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem

A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...

متن کامل

Computational Complexity, NP Completeness and Optimization Duality: A Survey

We survey research that studies the connection between the computational complexity of optimization problems on the one hand, and the duality gap between the primal and dual optimization problems on the other. To our knowledge, this is the first survey that connects the two very important areas. We further look at a similar phenomenon in finite model theory relating to complexity and optimization.

متن کامل

An Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem

A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...

متن کامل

Reduction of Computational Complexity in Finite State Automata Explosion of Networked System Diagnosis (RESEARCH NOTE)

This research puts forward rough finite state automata which have been represented by two variants of BDD called ROBDD and ZBDD. The proposed structures have been used in networked system diagnosis and can overcome cominatorial explosion. In implementation the CUDD - Colorado University Decision Diagrams package is used. A mathematical proof for claimed complexity are provided which shows ZBDD ...

متن کامل

Duality Gap, Computational Complexity and NP Completeness: A Survey

We survey research that studies the connection between the computational complexity of optimization problems on the one hand, and the duality gap between the primal and dual optimization problems on the other. To our knowledge, this is the first survey that connects the two very important areas. We further look at a similar phenomenon in finite model theory relating to complexity and optimization.

متن کامل

Near Pole Polar Diagram of Points and its Duality with Applications

In this paper we propose a new approach to plane partitioning with similar features to those of Polar Diagram, but we assume that the pole is close to the sites. The result is a new tessellation of the plane in regions called Near Pole Polar Diagram NPPD. Here we define the (NPPD) of points, the dual and the Contracted dual of it, present an optimal algorithms to draw them and discuss the appli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016